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Abstract
We exploit the geometrical superfield formalism to derive the local,
covariant and continuous Becchi–Rouet–Stora–Tyutin (BRST) symmetry
transformations and the non-local, non-covariant and continuous dual-BRST
symmetry transformations for the free Abelian 1-form gauge theory in four
(3 + 1)-dimensions (4D) of spacetime. Our discussion is carried out in the
framework of BRST invariant Lagrangian density for the above 4D theory in the
Feynman gauge. The geometrical origin and interpretation for the (dual-)BRST
charges (and the transformations they generate) are provided in the language
of translations of some superfields along the Grassmannian directions of the
six (4 + 2)-dimensional supermanifold parametrized by the four spacetime and
two Grassmannian variables.

PACS numbers: 11.15.−q, 12.20.−m, 03.70.+k

1. Introduction

In the realm of modern developments in theoretical high energy physics, the symmetry
transformations (and corresponding generators) have played a very important role. In
particular, the local, covariant and continuous gauge symmetry transformations have been
found to dictate the theoretical description of three (out of four) fundamental interactions of
nature. The quantum electrodynamics (QED) is one of the most extensively studied gauge
theories where the experimental tests and theoretical predictions have matched each other with
an unprecedented degree of accuracy in the history of science. One of the most elegant ways
of covariantly quantizing such gauge theories (e.g., QED) is the Becchi–Rouet–Stora–Tyutin
(BRST) formalism where both the ‘quantum’ gauge (i.e. BRST) invariance and unitarity
are respected together at any arbitrary order of perturbation theory. In this formalism, the
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local gauge invariant singular Lagrangian density is extended to include the gauge-fixing and
Faddeev–Popov ghost terms. The ensuing Lagrangian density turns out to be endowed with a
local, covariant, continuous and nilpotent symmetry transformation which is popularly known
as the BRST (or ‘quantum’ gauge) symmetry transformation [1, 2]. Under this transformation,
the kinetic energy term corresponding to the gauge field of the Lagrangian density remains
invariant (as is the case, even with the usual local gauge symmetry transformation). In
the recent past, the (anti-)BRST invariant Lagrangian density for the 1-form (non-)Abelian
gauge theories in 4D has been shown to possess a new nilpotent, continuous, non-local
and non-covariant BRST type transformations under which the gauge-fixing term for the
gauge field remains invariant [3–6]. We christen this latter symmetry transformation as the
dual(co)-BRST symmetry transformation. This is because of the fact that there exists a deep
connection between the kinetic energy term and the gauge-fixing term of the (anti-)BRST
invariant Lagrangian density on one hand and the de Rham cohomological operators of the
differential geometry on the other hand. For instance, the 2-form F = dA defines the curvature
term Fµν (i.e. F = 1

2 (dxµ ∧ dxν)Fµν) from which the kinetic energy term is constructed and
the 0-form δA = − ∗ d ∗ A = (∂ · A) implies the existence of (∂ · A) which is responsible for
the construction of the gauge-fixing term. Here δ = − ∗ d∗ (with δ2 = 0) and d = dxµ ∂µ

(with d2 = 0) are the (co-)exterior derivatives and ∗ is the Hodge duality operation of the
differential geometry (see, e.g., [7–11]). Thus, the kinetic energy term and the gauge-fixing
term owe their origin to the application of d and δ on the 1-form A = dxµ Aµ in a subtle way.
Together with the Laplacian operator � = dδ + δd, the (co-)exterior derivatives (δ)d form a
set (d, δ,�) which is popularly known as the set of de Rham cohomological operators. These
operators obey an algebra: d2 = 0, δ2 = 0,� = (d + δ)2 = {d, δ}, [�, d] = 0, [�, δ] = 0
showing that � is the Casimir operator (see, e.g., [7, 8] for details). The operation of � on the
1-form A (i.e. �A = dxµ � Aµ) leads to the derivation of the equation of motion �Aµ = 0
for the gauge-fixed Lagrangian density if we demand the validity of Laplace equation �A = 0
for this 1-form gauge theory.

One of the most interesting geometrical approaches to gain an insight into the BRST
formalism is the superfield formalism [12–17]. In this approach, the super exterior derivative
d̃ and the Maurer–Cartan equation are exploited together in the so-called horizontality
condition2 where the curvature ((p + 1)-form) tensor for the p-form (p = 1, 2, 3 . . .) gauge
theory is restricted to be flat along the Grassmannian directions of the (D + 2) dimensional
supermanifold that is parametrized by D-number of commuting spacetime variables xµ

and two anti-commuting (i.e. θ2 = 0, θ̄2 = 0, θ θ̄ + θ̄ θ = 0) Grassmann variables θ and
θ̄ . This technique leads to the geometrical interpretation of the conserved and nilpotent(
Q2

(a)b = 0
)

(anti-)BRST charges (Q(a)b) as the translation generators (∂/∂θ, ∂/∂θ̄) along
the Grassmannian directions of the supermanifold. Recently, in a set of papers [19–24], all
the super de Rham cohomological operators (d̃, δ̃, �̃) have been exploited in the generalized
versions of the horizontality condition for the 2D free Abelian and self-interacting non-Abelian
gauge theories on a four (2+2)-dimensional supermanifold. In this endeavour, the geometrical
interpretation for (i) the (anti-)BRST charges and corresponding transformations3 s(a)b, (ii)
the (anti-)co-BRST charges and the transformations s(a)d they generate (iii) a bosonic charge
(i.e. the anti-commutator of (anti-)BRST and (anti-)co-BRST charges) and corresponding
symmetry transformations sw, (iv) the nilpotency

(
Q2

(a)b = Q2
(a)d = 0

)
of the (anti-)BRST

(Q(a)b) and (anti-)co-BRST (Q(a)d) charges and (v) topological properties of the above 2D

2 This condition is referred to as the ‘soul flatness’ condition by Nakanishi and Ojima [18].
3 We follow here the conventions and notations used by Weinberg [25]. To be precise, in their totality, the nilpotent
(δ2

(A)B = 0) (anti-)BRST transformations δ(A)B are product of an anti-commuting (ηC + Cη = 0, ηC̄ + C̄η = 0)

spacetime independent parameter η and s(a)b (i.e. δ(A)B = ηs(a)b) with s2
(a)b = 0.
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1-form gauge theories, etc, has been provided in the framework of superfield formulation. It is
interesting to point out that, for the first time, the Lagrangian density and symmetric energy–
momentum tensor for the above topological field theories have been shown to correspond
to the translation of some composite superfields along the Grassmannian directions of the
(2 + 2)-dimensional supermanifold.

As pointed out earlier, the co-BRST symmetry transformations are non-local, non-
covariant, continuous and nilpotent [3–6]. Such kind of transformations (and corresponding
non-local generators) have not yet been discussed in the purview of the geometrical superfield
approach to BRST formalism. The purpose of the present paper is to provide geometrical
origin and interpretation for the conserved and nilpotent (co-)BRST charges (Q(d)b) (and the
transformations they generate) in the framework of superfield formulation applied to the 4D
free as well as interacting Abelian (1-form) gauge theory defined on a six (4 + 2)-dimensional
supermanifold. In particular, it is a challenging endeavour to provide geometrical origin
for the non-local, conserved and nilpotent (anti-)co-BRST charges4 in the framework of
superfield formalism as, to the best of our knowledge, such kind of charges have not yet been
discussed in its framework. In the present work, we exploit the super (co-)exterior derivatives
(δ̃)d̃ in the (dual-)horizontality conditions on the (4 + 2)-dimensional supermanifold and
demonstrate that the off-shell nilpotent (anti-)BRST charges (and the nilpotent s̃2

(a)b = 0
transformations they generate) correspond to the translations of some superfields along the
(θ)θ̄ directions of the supermanifold. In the similar fashion, we show that the off-shell
nilpotent (anti-)co-BRST charges (and the nilpotent s̃2

(a)d = 0 transformations they generate)
too correspond to the translation of some superfields along the (θ)θ̄ directions of the (4 + 2)-
dimensional supermanifold. However, there is a clear-cut distinction between them when it
comes to the transformations on the fermionic (anti-)ghost fields. Whereas the superfield
corresponding to the anti-ghost field C̄ becomes chiral under the BRST transformation, it is
the superfield corresponding to the ghost field C that turns into chiral under the co-BRST
transformation. Just the reverse happens when we consider the derivation of anti-BRST
and anti-co-BRST transformations in the framework of superfield formulation. In fact, the
superfields corresponding to the (anti-)ghost fields become anti-chiral in the latter case of
superfield formulation. In the computation of the Hodge duality � operation on the six-
dimensional supermanifold, we have explained all the steps of our calculation because, to
the best of our knowledge, this operation is not quite well known in the literature5. We
have collected some of the non-trivial results of the � operation in the appendix also. For
the discussion of the geometrical origin of the on-shell nilpotent (anti-)BRST and (anti-)co-
BRST transformations, we invoke the (anti-)chiral superfields and establish that the on-shell
nilpotent charges correspond to the translation of some variety of the (anti-)chiral superfields
along a specific Grassmannian direction of the above supermanifold. In fact, the process
of translation of the (anti-)chiral superfields along the Grassmannian directions leads to the
derivation of internal on-shell nilpotent symmetries s(a)b and s(a)d on the basic fields of the
Lagrangian density of the 4D free Abelian gauge theory. The nilpotency of the on-shell as well
as off-shell versions of these charges is captured in the property (∂/∂θ)2 = 0, (∂/∂θ̄)2 = 0
of the translation generators (∂/∂θ) and (∂/∂θ̄) along the Grassmannian directions of the
supermanifold.

The outline of our present paper is as follows. In section 2, we briefly recapitulate the bare
essentials of the (anti-)BRST and (anti-)co-BRST symmetries in the Lagrangian formulations
to set up the notations and conventions. Section 3 is devoted to the derivation of the off-shell

4 It will be noted that such (anti-)co-BRST charges exist for the free as well as interacting 4D Abelian 1-form gauge
theories and they carry the same expression (cf equation (2.7)) for both these cases.
5 Private communication with V A Soroka on this topic is gratefully acknowledged.
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nilpotent (anti-)BRST and (anti-)co-BRST symmetries in the framework of superfield
formulation. The on-shell nilpotent (co-)BRST symmetries are derived by invoking the chiral
superfields in section 4. Section 5 deals with the derivation of the on-shell nilpotent anti-
BRST and anti-co-BRST symmetries by exploiting the anti-chiral superfields. In section 6,
the on-shell nilpotent (anti-)BRST and (anti-)co-BRST symmetries are deduced together by
utilizing the general superfield expansions. Finally, in section 7, we make some concluding
remarks and point out a few future directions that can be pursued later.

2. Preliminary: (co-)BRST symmetries

We discuss here the on-shell as well as off-shell nilpotent (anti-)BRST and (anti-)co-BRST
symmetries in the Lagrangian formalism. To this end in mind, we first begin with the following
BRST invariant Lagrangian density for the four (3 + 1)-dimensional (4D) interacting Abelian
gauge theory6 in the Feynman gauge (see, e.g., [25–28]):

Lb = − 1
4FµνFµν − 1

2 (∂ · A)2 + ψ̄(iγ µDµ − m)ψ − i ∂µC̄∂µC

≡ 1
2 (E2 − B2) − 1

2 (∂ · A)2 + ψ̄(iγ µDµ − m)ψ − i ∂µC̄∂µC
(2.1)

where Dµ = ∂µ + ie Aµ is the covariant derivative, Fµν = ∂µAν − ∂νAµ is the curvature
(field strength) tensor constructed from the vector potential Aµ (with the components
F0i = Ei ≡ E, Fij = εijkBk, Bi = 1

2εijkFjk ≡ B), anti-commuting (C2 = C̄2 =
0, CC̄ + C̄C = 0, Cψ + ψC = 0, etc) (anti-)ghost fields are required in the theory for
maintaining the unitarity and ‘quantum’ gauge invariance together7 at any arbitrary order of
perturbation theory and (ψ̄)ψ are the Dirac fields with charge e and mass m (see, e.g., [29]
for details). As pointed out earlier in the introduction, we have the gauge-fixing term, the
vector potential and the curvature term as the 0-form (δA = − ∗ d ∗ A = (∂ · A)), 1-form
(A = dxµ Aµ) and 2-form (F = dA = 1

2 (dxµ ∧ dxν)Fµν) in our present 4D free (1-form)
Abelian gauge theory. The gauge-fixing term and the curvature 2-form are constructed by
the application of de Rham cohomological operators δ and d on the 1-form A = dxµ Aµ.
It is straightforward to check that under the following on-shell (�C = � C̄ = 0) nilpotent
s2
(a)b = 0 (anti-)BRST transformations (with sbsab + sabsb = 0) (see, e.g., [25–28] for details)

sbAµ = ∂µC sbC = 0 sbC̄ = −i (∂ · A) sbψ = −ieCψ sbψ̄ = −ieψ̄C

sabAµ = ∂µC̄ sabC̄ = 0 sabC = +i (∂ · A) sabψ = −ieC̄ψ sabψ̄ = −ieψ̄C̄

(2.2)

the kinetic energy term of the Lagrangian density remains invariant. More precisely, the
curvature tensor Fµν itself remains unchanged under the above transformations. In other
words, the classical electric field E and magnetic field B are left intact under the above nilpotent
(anti-)BRST transformations. In contrast, under the following on-shell (�C = � C̄ = 0)

nilpotent
(
s2
(a)d = 0

)
(anti-)co-BRST s(a)d transformations (with sdsad + sadsd = 0) (see, e.g.,

6 The free 4D Abelian (1-form) gauge theory is the special case of an interacting theory. We adopt here the conventions
and notations such that the 4D flat Minkowski manifold is endowed with a metric: ηµν = diag (+1, −1,−1,−1)

and totally anti-symmetric Levi-Civita tensor satisfies εµνλξ ε
µνλξ = −4!, εµνλξ ε

µνλρ = −3!δρ
ξ etc with the choice

ε0123 = +1, ε0ijk = εijk = −ε0ijk . Here the Greek indices correspond to spacetime directions of the 4D manifold
and Latin indices stand for the space directions only. The 3-vectors on the manifold are occasionally denoted by the
bold faced letters (e.g., E, B, b(1), b(2)).
7 The true strength of the BRST formalism and its (anti-)ghost fields turn up in their full glory for the proof of
unitarity in the context of interacting non-Abelian gauge theory where there is a gauge invariant interaction between
the quark and gluon fields (see, e.g., [29] for details).
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[3] for details)

sdA0 = iC̄ sdAi = i
∂0∂i

∇2
C̄ sdC̄ = 0 sdψ =

( e

∇2
∂0C̄

)
ψ

sdC = −A0 +
∂0∂i

∇2
Ai +

e

∇2
ψ̄γ0ψ ≡ ∂iEi + eJ0

∇2
sdψ̄ = ψ̄

( e

∇2
∂0C̄

)
sadA0 = iC sadAi = i

∂0∂i

∇2
C sadC = 0 sadψ =

( e

∇2
∂0C

)
ψ

sadC̄ = A0 − ∂0∂i

∇2
Ai − e

∇2
ψ̄γ0ψ ≡ −∂iEi + eJ0

∇2
sadψ̄ = ψ̄

( e

∇2
∂0C

)
(2.3)

it is the gauge-fixing term that remains invariant. More precisely, the term (∂ ·A) itself remains
unchanged under the above transformation. The salient features, at this stage, are (i) the above
Lagrangian density remains invariant (modulo a total derivative) under the (anti-)BRST as well
as the (anti-)co-BRST transformations. (ii) The (anti-)BRST transformations leave the 2-form
F = dA invariant. (iii) The (anti-)co-BRST transformations keep the 0-form (∂ · A) = δA

unaltered. (iv) The 2-form F = dA and the 0-form δA = (∂ · A) are, in some sense, ‘Hodge
dual’ to each other because δ = − ∗ d∗ and d are Hodge dual to each other. (v) The magnetic
field B remains invariant (i.e. s(a)bBi = s(a)dBi = 0) under all the nilpotent (anti-)BRST
and (anti-)co-BRST transformations. (vi) It is obvious that a bosonic symmetry sw can be
obtained from the anti-commutator (sw = {sb, sd} = {sab, sad}) of the (anti-)BRST s(a)b and
(anti-)co-BRST s(a)d symmetries. However, we shall not discuss here about this symmetry as
it is not essential for our present work. An elementary discussion on it can be found in [3] (vii)
The (anti-)BRST transformations are local, continuous, covariant and nilpotent but the (anti-)
co-BRST transformations are non-local, continuous, non-covariant and nilpotent. (viii) The
off-shell nilpotent version of the above nilpotent symmetries has not been discussed together
in [3–6]. We obtain the off-shell nilpotent version of the above symmetries by invoking a
couple of 3-vector auxiliary fields b(1) and b(2) and a scalar auxiliary field b3. They play an
important role in linearizing the Lagrangian density (2.1) and, in the process, change it to the
following form:

LB = b
(1)
i Ei − 1

2 (b(1))2 − b
(2)
i Bi + 1

2 (b(2))2 + b3(∂ · A) + 1
2 (b3)

2

+ ψ̄(iγ µDµ − m)ψ − i ∂µC̄∂µC. (2.4)

It is straightforward to check that b(1) = E, b(2) = B and b3 = −(∂ ·A). The off-shell nilpotent
version of the (anti-)BRST transformations (2.2) is

s̃bAµ = ∂µC s̃bC = 0 s̃bψ = −ieCψ s̃bC̄ = i b3 s̃bb3 = 0

s̃bE = 0 s̃bB = 0 s̃bb(1) = 0 s̃bb(2) = 0 s̃bψ̄ = −ieψ̄C

s̃abAµ = ∂µC̄ s̃abC̄ = 0 s̃abψ = −ieC̄ψ s̃abC = −i b3 s̃abb3 = 0

s̃abE = 0 s̃abB = 0 s̃abψ̄ = −ieψ̄C̄ s̃abb(1) = 0 s̃abb(2) = 0

(2.5)

and that of the (anti-)co-BRST symmetry transformations in (2.3) is

s̃dA0 = i C̄ s̃dAi = i
∂0∂i

∇2
C̄ s̃d C̄ = 0

s̃dC = ∂ib
(1)
i + eJ0

∇2
s̃dψ =

( e

∇2
∂0C̄

)
ψ s̃dψ̄ = ψ̄

( e

∇2
∂0C̄

)
s̃db(1) = 0 s̃db3 = 0 s̃db(2) = 0 s̃d (∂ · A) = 0 s̃dB = 0

s̃adA0 = i C s̃adAi = i
∂0∂i

∇2
C s̃adC = 0
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s̃ad C̄ = −∂ib
(1)
i + eJ0

∇2
s̃adψ =

( e

∇2
∂0C

)
ψ s̃adψ̄ = ψ̄

( e

∇2
∂0C

)
s̃adb(1) = 0 s̃adb3 = 0 s̃adb(2) = 0 s̃ad(∂ · A) = 0 s̃adB = 0.

(2.6)

In the later sections, we shall see that the auxiliary fields, present in the Lagrangian density
(2.4) for the derivations of the off-shell nilpotent (anti-)BRST and (anti-)co-BRST versions of
symmetry transformations, will play important roles.

The (non-)local, conserved and on-shell nilpotent generators for the above on-shell
nilpotent (co-)BRST transformations can be computed from the Noether conserved current.
These, for the free as well as interacting 4D Abelian gauge theories, are [3]

Qd =
∫

d3x

[
∂0(∂ · A)

∇2
˙̄C − (∂ · A)C̄

]

Qb =
∫

d3x
[
∂0(∂ · A)C − (∂ · A)Ċ

]
.

(2.7)

From the above expressions, the (non-)local, nilpotent and conserved charges corresponding to
anti-co-BRST symmetries and anti-BRST symmetries can be computed by the substitutions:
C → ±iC̄, C̄ → ±iC which turn out to be the discrete symmetry transformations for the
ghost part of the action. In fact, for the generic field �(x) = (Aµ,C, C̄)(x) of the theory, the
conserved charges Qr generate the following generic transformations:

sr� = −i [�,Qr ]± r = b, ab, d, ad,w, g (2.8)

where Qg stands for the conserved ghost charge which generates an infinitesimal continuous
and global scale transformation for the basic fields of the theory as: sgAµ = 0, sgC =
−�C, sgC̄ = +�C̄ where � is a global parameter. The (+)− signs, as the subscripts
on the square bracket, imply (anti-)commutators depending on the generic field � being
(fermionic)bosonic in nature. Thus, we note that (i) there are four (non-)local, continuous,
(non-)covariant and on-shell as well as off-shell nilpotent (i.e. s2

(a)b = s2
(a)d = s̃2

(a)b = s̃2
(a)d = 0)

symmetries and a couple of continuous, (non-)local and (non-)covariant bosonic symmetries
sw and sg in the theory and (ii) the generic transformation in (2.8) is also valid for the off-
shell nilpotent (anti-)BRST s̃(a)b transformations, (anti-)co-BRST s̃(a)d transformations and
the corresponding bosonic s̃w = {s̃(a)b, s̃(a)d} transformations as well as the scale symmetry
transformations sg .

3. Off-shell nilpotent symmetries: general superfield approach

To derive the off-shell nilpotent (anti-)BRST and (anti-)co-BRST symmetries together in the
framework of superfield formulation, we resort to the most general super expansion for the
superfields Bµ(x, θ, θ̄ ),�(x, θ, θ̄ ) and �̄(x, θ, θ̄ ). These superfields are the generalization
of the local fields Aµ(x), C(x) and C̄(x) of the 4D Lagrangian density (2.1) to a six (4 + 2)-
dimensional supermanifold which is parametrized by the four bosonic (even) spacetime
(xµ, µ = 0, 1, 2, 3) coordinates and two (odd) Grassmannian (θ2 = θ̄2 = 0, θ θ̄ + θ̄ θ = 0)

variables. The most general expansion for the above superfields is

Bµ(x, θ, θ̄ ) = Aµ(x) + θR̄µ(x) + θ̄Rµ(x) + i θ θ̄Sµ(x)

�(x, θ, θ̄ ) = C(x) + i θb̄3(x) + i θ̄B(x) + i θ θ̄s(x)

�̄(x, θ, θ̄ ) = C̄(x) + i θ B̄(x) + i θ̄b3(x) + i θ θ̄ s̄(x)

(3.1)
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where the number of degree of freedom associated with both the sets of the bosonic fields
(Aµ, Sµ, b3, b̄3,B, B̄) and the fermionic fields (Rµ, R̄µ, C, C̄, s, s̄) are equal. It should be
noted that the local matter fields ψ and ψ̄ of the Lagrangian density (2.1) have not been
generalized to their counterparts in the language of superfields. This is due to the fact
that, to the best of our knowledge, it is not known how to obtain the BRST-type symmetry
transformations on the matter fields in the framework of superfield formulation. We comment
on it in the conclusion (cf section 7) part of our present paper. The most general form of the
super exterior derivative d̃ and the 1-form super connection Ã

d̃ = dZM∂M ≡ dxµ ∂µ + dθ̄∂θ̄ + dθ∂θ

Ã = dZMÃM ≡ dxµ Bµ(x, θ, θ̄ ) + dθ̄�(x, θ, θ̄ ) + dθ�̄(x, θ, θ̄ )
(3.2)

(with ZM = xµ, θ, θ̄ ) lead to the following super curvature 2-form (F̃ = d̃Ã):

d̃Ã = 1
2 (dZM ∧ dZN)FMN

≡ (dxµ ∧ dxν)(∂µBν) − (dθ ∧ dθ)(∂θ �̄) − (dθ ∧ dθ̄ )(∂θ� + ∂θ̄ �̄)

− (dθ̄ ∧ dθ̄ )(∂θ̄�) + (dxµ ∧ dθ)(∂µ�̄ − ∂θBµ) + (dxµ ∧ dθ̄ )(∂µ�̄ − ∂θ̄Bµ). (3.3)

Now we exploit the horizontality condition (d̃Ã = dA) which physically implies that there are
no superspace contributions to the physical electric and magnetic fields described by the 2-form
F = dA = 1

2 (dxµ ∧ dxν)Fµν in the usual 4D spacetime. In other words, all the components
of FMN with Grassmannian variables θ and/or θ̄ will be flat. This results in the following
relationships among the auxiliary fields of expansion in (3.1) and the basic local fields of the
Lagrangian density (2.1) (see, e.g., [14, 20] for details):

B(x) = B̄(x) = 0 s(x) = s̄(x) = 0 b3(x) + b̄3(x) = 0

Rµ(x) = ∂µC(x) R̄µ(x) = ∂µC̄(x) Sµ(x) = ∂µb3(x).
(3.4)

With the above relationships, the expansion in (3.1) can be re-expressed in terms of the off-shell
nilpotent (anti-)BRST transformations of (2.5) as

Bµ(x, θ, θ̄ ) = Aµ(x) + θ(s̃abAµ(x)) + θ̄ (s̃bAµ(x)) + θ θ̄(s̃bs̃abAµ(x))

�(x, θ, θ̄ ) = C(x) + θ(s̃abC(x)) + θ̄ (s̃bC(x)) + θ θ̄(s̃bs̃abC(x))

�̄(x, θ, θ̄ ) = C̄(x) + θ(s̃abC̄(x)) + θ̄ (s̃bC̄(x)) + θ θ̄(s̃bs̃abC̄(x)).

(3.5)

The above expansion, in view of the relationships in (2.8) for the generators of internal
transformations, unequivocally makes it clear that the local conserved and off-shell nilpotent
(anti-)BRST charges geometrically correspond to the translation generators (∂/∂θ)∂/∂θ̄ along
the (θ)θ̄ directions of the (4 + 2)-dimensional supermanifold (in the limit θ, θ̄ → 0) and their
off-shell nilpotency is captured in the specific property of the translation generators which
obey (∂/∂θ)2 = 0, (∂/∂θ̄)2 = 0 (cf section 7).

Now we shall dwell on the derivation of the off-shell nilpotent, continuous, non-local
and non-covariant (anti-)co-BRST symmetry transformations of (2.6) in the framework
of superfield formulation. To this end in mind, first of all we derive the dual version
(�Ã = �(dZM)AM) of the super 1-form connection Ã defined in (3.2). The resulting dual
super form (�Ã) is, of course, a 5-form in the six (4 + 2)-dimensional supermanifold. The
explicit expression for this � operation on Ã is

� Ã = 1

3!
εµνλξ (dxν ∧ dxλ ∧ dxξ ∧ dθ ∧ dθ̄ )Bµ(x, θ, θ̄ )

+
1

4!
εµνλξ (dxµ ∧ dxν ∧ dxλ ∧ dxξ ∧ dθ̄ )�̄(x, θ, θ̄ )

+
1

4!
εµνλξ (dxµ ∧ dxν ∧ dxλ ∧ dxξ ∧ dθ)�(x, θ, θ̄ ). (3.6)
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In fact, the above 5-form (�Ã) has been computed for the purpose of the operation of super
co-exterior derivative δ̃ = − � d̃� on the super 1-form Ã where the � operation is the Hodge
duality operation defined on the (4+2)-dimensional supermanifold. The following � operation
on the super differentials (dZM) has been taken into account in the above computation:

�(dxµ) = 1

3!
εµνλξ (dxν ∧ dxλ ∧ dxξ ∧ dθ ∧ dθ̄ )

�(dθ) = 1

4!
εµνλξ (dxµ ∧ dxν ∧ dxλ ∧ dxξ ∧ dθ̄ )

�(dθ̄ ) = 1

4!
εµνλξ (dxµ ∧ dxν ∧ dxλ ∧ dxξ ∧ dθ).

(3.7)

It should be noted that (i) in the denominator, the factorials have been taken corresponding
to the 4D spacetime Minkowski manifold because the Grassmannian differentials behave in
a completely different manner than the spacetime differentials. (ii) Even though, the 2-form
differentials dθ ∧ dθ and dθ̄ ∧ dθ̄ do exist in terms of the Grassmannian co-ordinates, they
have not been taken into account in the � operation on the 1-form spacetime differential
dxµ. This is because of the fact that θ and θ̄ directions are the independent directions on the
supermanifold which constitute the dual directions for the differential (dxµ) along with the
other three spacetime directions. The latter spacetime (dual) directions are taken into account
through the 4D Levi-Civita tensor εµνλξ defined on the 4D Minkowski manifold. (iii) In the
limit (θ, θ̄ ) → 0, we get back the ordinary Hodge duality ∗ operation defined on the 4D
Minkowski manifold. (iv) We follow the convention of arranging the spacetime differentials
to the left and Grassmannian differentials to the right in all the wedge products. Now we apply
the super exterior derivative d̃ on (3.6) which yields the following:

d̃ � Ã = 1

3!
εµνλξ (dxρ ∧ dxν ∧ dxλ ∧ dxξ ∧ dθ ∧ dθ̄ )(∂ρBµ)(x, θ, θ̄ )

− 1

4!
εµνλξ (dxµ ∧ dxν ∧ dxλ ∧ dxξ ∧ dθ ∧ dθ̄ )(∂θ �̄)(x, θ, θ̄ )

− 1

4!
εµνλξ (dxµ ∧ dxν ∧ dxλ ∧ dxξ ∧ dθ ∧ dθ̄ )(∂θ�)(x, θ, θ̄ )

− 1

4!
εµνλξ (dxµ ∧ dxν ∧ dxλ ∧ dxξ ∧ dθ̄ ∧ dθ̄ )(∂θ̄ �̄)(x, θ, θ̄ )

− 1

4!
εµνλξ (dxµ ∧ dxν ∧ dxλ ∧ dxξ ∧ dθ ∧ dθ̄ )(∂θ̄�)(x, θ, θ̄ ). (3.8)

A few noteworthy points at this stage are (i) we have dropped all the terms in the above which
possess more than four differentials in terms of the spacetime co-ordinates and more than two
differentials in the Grassmann variables. (ii) The origin for the existence of the differentials
dθ ∧ dθ̄ in the first term, second term and the last term is entirely different. That is to say, the
latter two are similar but completely different from the first term in their origin. Thus, while
taking the another � on (3.8), this difference will appear. In fact, another � operation (due to
δ̃Ã = − � d̃ � Ã) on (3.8) leads to the following:

δ̃Ã ≡ − � d̃ � Ã = (∂ · B) − sθθ̄ (∂θ �̄ + ∂θ̄�) − sθθ (∂θ�) − sθ̄ θ̄ (∂θ̄ �̄) (3.9)

where coefficients s ′ are symmetric (i.e. sθθ̄ = sθ̄θ etc) and we have exploited the following:

�(dxρ ∧ dxν ∧ dxλ ∧ dxξ ∧ dθ ∧ dθ̄ )(∂ρBµ) = ερνλξ (∂
ρBµ)

�(dxµ ∧ dxν ∧ dxλ ∧ dxξ ∧ dθ ∧ dθ̄ )(∂θ �̄) = εµνλξ s
θθ̄ (∂θ �̄)

�(dxµ ∧ dxν ∧ dxλ ∧ dxξ ∧ dθ ∧ dθ̄ )(∂θ̄�) = εµνλξ s
θθ̄ (∂θ̄�).

(3.10)
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It is evident that the presence of the symmetric s ′ in the � operation depends on the origin of
the wedge products dθ ∧ dθ̄ . This has been done to account for the property of the duality �

operation which requires the validity of �(�G) = ±G on any generic superfield G (see, e.g.,
[30] for details on the ordinary ∗ operations). Thus, the existence of s ′ keeps track of (i) the
origin of the Grassmannian differentials and (ii) the kind of differentials one should get after
a couple of successive � operations on any arbitrary differential super forms (that contain the
Grassmann differentials). Some of these � operations have been collected in the appendix.
The application of the dual-horizontality condition (δ̃Ã = δA) leads to the following:

b3(x) = b̄3(x) = s(x) = s̄(x) = 0 B(x) + B̄(x) = 0

(∂ · R)(x) = 0 (∂ · R̄)(x) = 0 (∂ · S)(x) = 0.
(3.11)

It is straightforward to check that the following choices for the free theory:

R0 = iC̄ Ri = i
∂i∂0

∇2
C̄ R̄0 = iC

R̄i = i
∂i∂0

∇2
C B = −i

∂ib
(1)
i

∇2
B̄ = +i

∂ib
(1)
i

∇2

(3.12)

do satisfy the above conditions emerging from the dual-horizontality conditions. For the
interacting theory, the auxiliary fields can be chosen as: B(I ) = −i

(
∂ib

(1)
i + eJ0

)/∇2, B̄(I ) =
+i

(
∂ib

(1)
i + eJ0

)/∇2. The expressions for Rµ and R̄µ in (3.12) remain intact for the interacting
case. It is clear that one cannot obtain the transformations on the matter fields ψ and ψ̄ in
the present form of the superfield formulation. As far as the determination of Sµ(S(I)

µ ) is
concerned, we choose judiciously the following expressions for its components in the case of
free and interacting theories:

S0 = ∂ib
(1)
i

∇2
Si = ∂i ∂0

∇2

(
∂jb

(1)
j

∇2

)

S
(I)
0 = ∂ib

(1)
i + eJ0

∇2
S

(I)
i = ∂i ∂0

∇2

(
∂jb

(1)
j + eJ0

∇2

)
.

(3.13)

It is worth pointing out that the auxiliary field b(2) has not been taken into account here
because this field and its equivalent (the magnetic field B) do not transform under any of the
transformations discussed above. In terms of the above quantities and the transformations
(2.6), we obtain the following expansions for the superfields in (3.1):

Bµ(x, θ, θ̄ ) = Aµ(x) + θ(s̃adAµ(x)) + θ̄ (s̃dAµ(x)) + θ θ̄(s̃d s̃adAµ(x))

�(x, θ, θ̄ ) = C(x) + θ(s̃adC(x)) + θ̄ (s̃dC(x)) + θ θ̄(s̃d s̃adC(x))

�̄(x, θ, θ̄ ) = C̄(x) + θ(s̃ad C̄(x)) + θ̄ (s̃d C̄(x)) + θ θ̄(s̃d s̃ad C̄(x)).

(3.14)

It is obvious now that the (anti-)co-BRST charges which are the generators of (anti-)co-BRST
transformations in (2.8) are the translation generators along the Grassmannian directions
of the six-dimensional supermanifold. The nilpotency of these charges (i.e. Q2

(a)d = 0)
geometrically corresponds to a couple of successive ((∂/∂θ)2 = (∂/∂θ̄)2 = 0) translations
along the Grassmannian directions of the six-dimensional supermanifold (cf section 7).

4. On-shell nilpotent (co-)BRST symmetries: chiral superfield formalism

To provide the geometrical origin and interpretation for the on-shell nilpotent (co-)-
BRST symmetries (s(d)b) and corresponding generators (Q(d)b), we resort to the chiral
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superfield formulation on the four (4 + 2)-dimensional supermanifold. To this end in
mind, first of all we generalize the generic local field �(x) = (Aµ(x), C(x), C̄(x))

of the Lagrangian density (2.1) to a chiral (∂θ ÃM(x, θ, θ̄ ) = 0) supervector superfield
Ã

(c)
M (x, θ̄) = (

B(c)
µ (x, θ̄),�(c)(x, θ̄ ), �̄(c)(x, θ̄ )

)
with the following super expansions along

the Grassmannian θ̄ -direction of the supermanifold:

B(c)
µ (x, θ̄ ) = Aµ(x) + θ̄Rµ(x)

�(c)(x, θ̄ ) = C(x) + iθ̄B(x)

�̄(c)(x, θ̄ ) = C̄(x) + iθ̄b3(x).

(4.1)

There are a few relevant points which we summon here: (i) it is obvious that, in the limit
θ̄ → 0, we get back the generic field �(x) of the Lagrangian density (2.1). (ii) In general,
a superfield on the six (4 + 2)-dimensional supermanifold is parametrized by the superspace
variables ZM = (xµ, θ, θ̄ ) as discussed earlier. However, for our present discussions, we have
chosen ZM

(c) = (xµ, θ̄) as the chiral limit of the general ZM . (iii) The specific choices in the
expansion of the superfields �(c)(x, θ̄ ) and �̄(c)(x, θ̄ ) have been guided by the transformations
in (2.5) and (2.6). (iv) The total number of degrees of freedom for the odd fields (Rµ,C, C̄)

and even fields
(
Aµ, b3,B = −i ∂ib

(1)
i

/∇2
)

match in the above expansion for the sake of
consistency with the basic tenets of supersymmetry. (v) The auxiliary fields Rµ, b3, b(1) will
be fixed in terms of the basic fields after the application of the (dual-)horizontality conditions.
Some of them can also be fixed by resorting to the equations of motion for the Lagrangian
density (2.4). (vi) All the component fields, on the r.h.s. of the above expansion, are functions
of the spacetime even variable xµ alone. (vii) The super expansions in (4.1) are the chiral
limit (θ → 0) of the most general expansions in (3.1). (viii) The auxiliary field b(2) has not
been taken into the expansion because its equivalent (the magnetic field B) does not transform
under (anti-)BRST as well as (anti-)co-BRST transformations.

Now we exploit the horizontality condition (F̃ = (d̃Ã)|(c) = d̃A = F) w.r.t. (super)
exterior derivatives (d̃)d in the construction of the (super) curvature 2-form. Physically, the
requirement of the horizontality condition implies an imposition that the curvature 2-form
in the ordinary spacetime manifold remains unchanged and it is restricted not to get any
contribution from the superspace variables. The explicit expressions for the l.h.s. and r.h.s.
in the horizontality condition (d̃Ã)|(c) = dA are

(d̃Ã)|(c) = (dxµ ∧ dxν)
(
∂µB(c)

ν

)
+ (dxµ ∧ dθ̄ )

(
∂µ�(c) − ∂θ̄B

(c)
µ

) − (dθ̄ ∧ dθ̄ )(∂θ̄�
(c))

dA = (dxµ ∧ dxν)(∂µAν) ≡ 1
2 (dxµ ∧ dxν)(∂µAν − ∂νAµ)

(4.2)

where the super exterior derivative (defined in terms of the chiral superspace coordinates) and
super connection 1-form (defined in terms of the chiral superfields) are

d̃|(c) = dZM
(c)∂M ≡ dxµ ∂µ + dθ̄∂θ̄

Ã|(c) = dZM
(c)Ã

(c)
M ≡ dxµ B(c)

µ (x, θ̄ ) + dθ̄�(c)(x, θ̄ ).
(4.3)

It is straightforward to check that the horizontality restriction (d̃Ã)|(c) = dA leads to the
following relationships:

∂θ̄�
(c) = 0 → B(x) ≡ −i

∂ib
(1)
i (x)

∇2
= 0 ∂θ̄B

(c)
µ = ∂µ�(c) → Rµ(x) = ∂µC(x) (4.4)

and the restriction ∂µBν − ∂νBµ = ∂µAν − ∂νAµ implies ∂µRν − ∂νRµ = 0 which is readily
satisfied by Rµ = ∂µC. It is obvious that the condition (d̃Ã)|(c) = dA does not fix the auxiliary
field b3(x) in terms of the basic fields of the Lagrangian density (2.1). However, the equation
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of motion for the Lagrangian density (2.4) comes to our rescue as: b3(x) = −(∂ ·A)(x). With
these substitutions for the auxiliary fields, the super expansion (3.1) becomes:

B(c)
µ (x, θ̄ ) = Aµ(x) + θ̄∂µC(x) ≡ Aµ(x) + θ̄ (sbAµ(x))

�(c)(x, θ̄ ) = C(x) + iθ̄ (B(x) = 0) ≡ C(x) + θ̄ (sbC(x) = 0)

�̄(c)(x, θ̄ ) = C̄(x) − iθ̄ (∂ · A)(x) ≡ C̄(x) + θ̄ (sbC̄(x)).

(4.5)

In fact, now the on-shell nilpotent BRST symmetry transformations in (2.2) can be concisely
written in terms of the above superfields expansions as

sbB
(c)
µ (x, θ̄ ) = ∂µ�(c)(x, θ̄ ) sb�

(c)(x, θ̄ ) = 0 sb�̄
(c)(x, θ̄ ) = −i(∂ · B)(c)(x, θ̄ ).

(4.6)

One can readily check that the first transformation in the above equation leads to sbAµ =
∂µC, sbC = 0; the second transformation produces sbC = 0 and the third one generates
sbC̄ = −i(∂ · A), sb(∂ · A) = �C in terms of the basic fields of Lagrangian density (2.1). It
is interesting to check, vis-a-vis equation (2.8), that

∂

∂θ̄
Ã

(c)
M (x, θ̄) = −i[�(x),Qb]± ≡ sb�(x) Ã

(c)
M = (�, �̄, Bµ)(c) � = (C, C̄, Aµ)

(4.7)

where the brackets [, ]± stand for the (anti-)commutators when the generic field � and
superfield Ã

(c)
M are (fermionic)bosonic in nature. Thus, conserved and on-shell nilpotent BRST

charge Qb geometrically turns out to be the translation generator ∂/∂θ̄ for the superfields Ã
(c)
M

along the θ̄ -direction of the supermanifold. The process of this translation generates the on-
shell nilpotent BRST symmetry transformations on � which correspond to (2.2). In addition,
the nilpotency of s2

b = 0 and Q2
b = 0 is intimately connected with the property of the square

of the translational generator (i.e. (∂/∂θ̄)2 = 0).
We illustrate now the derivation of the on-shell nilpotent dual(co-)BRST symmetry

transformations of (2.3) by exploiting the analogue of the horizontality condition8 w.r.t. (super)
co-exterior derivatives (δ̃)δ by requiring (δ̃Ã)|(c) = δA. It is obvious that the chiral limit (i.e.
θ → 0) of the most general expression for δ̃Ã in equation (3.9) yields the following expression
for (δ̃Ã)|(c):

Limθ→0(δ̃Ã) = (δ̃Ã)|(c) ≡ (∂ · B)(c)(x, θ̄ ) − sθ̄ θ̄ ∂θ̄ �̄
(c)(x, θ̄ ). (4.8)

Due to the dual-horizontality requirement, the above equation (defined on the supermanifold)
is to be equated with δA = − ∗ d ∗ A ≡ (∂ · A) (defined on the ordinary 4D spacetime
manifold). This restriction leads to the following relationships:

∂θ̄ �̄
(c)(x, θ̄ ) = 0 → b3(x) = 0 (∂ · B)(c)(x, θ̄ ) = (∂ · A)(x) → (∂ · R)(x) = 0. (4.9)

The above condition (∂ · R) = 0 is satisfied automatically by the choice R0 = iC̄, Ri =
i(∂i∂0/∇2)C̄. It is obvious that, in the expansion (4.1), the auxiliary field B = −i

(
∂ib

(1)
i

/∇2
)

or B(I ) = −i
(
∂ib

(1)
i + eJ0

/∇2
)

for the free as well as interacting theory is not fixed in terms of
the basic fields of (2.1) by the dual-horizontality condition. However, the equation of motion

8 We christen this condition as the dual-horizontality condition because d̃(d) and δ̃(δ) are dual (δ̃ = −�d̃�, δ = −∗d∗)

to each other. Here the Hodge duality operations ∗ and � are defined on the 4D Minkowski manifold and 6D
supermanifold, respectively. The restriction (δ̃Ã)|(c) = δA amounts to setting equal to zero all the Grassmannian
parts of the superscalar (δ̃Ã)|(c). On the ordinary even dimensional manifold, the operation δA = − ∗ d ∗ A always
yields the covariant gauge-fixing term (∂ · A) (i.e. 0-form) for the 1-form (A = dxµ Aµ) Abelian U(1) gauge theory
in any arbitrary spacetime dimension.
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for the Lagrangian density (2.4) helps us to get b(1) = E. Thus, the chiral super expansion
(3.1), for the free theory, becomes

B
(c)
0 (x, θ̄ ) = A0(x) + θ̄ (iC̄(x)) ≡ A0(x) + θ̄ (sdA0(x))

B
(c)
i (x, θ̄ ) = Ai(x) + θ̄

(
i
∂i ∂0

∇2
C̄(x)

)
≡ Ai(x) + θ̄ (sdAi(x))

�(c)(x, θ̄ ) = C(x) + θ̄

(
∂iEi(x)

∇2

)
≡ C(x) + θ̄ (sdC(x))

�̄(c)(x, θ̄ ) = C̄(x) + θ̄ (ib3(x) = 0) ≡ C̄(x) + θ̄ (sdC̄(x) = 0).

(4.10)

It is now evident that

∂

∂θ̄
Ã

(c)
M (x, θ̄) = −i[�(x),Qd ]± ≡ sd�(x)

Ã
(c)
M (x, θ̄) = (�, �̄, B0, Bi)

(c)(x, θ̄ ) �(x) = (C, C̄, A0, Ai)(x)

(4.11)

where the brackets have the same meaning as discussed earlier. This equation shows that
geometrically the on-shell nilpotent co-BRST charge Qd is the generator of translation ∂/∂θ̄

for the chiral superfield Ã
(c)
M along the Grassmannian direction θ̄ of the (4 + 2)-dimensional

supermanifold. Furthermore, the on-shell nilpotency conditions s2
d = 0 and Q2

d = 0
are connected with the property of the square of the translational generator (∂/∂θ̄)2 = 0.
The process of the translation of Ã

(c)
M (x, θ̄) = (B0, Bi,�, �̄)(c)(x, θ̄ ) along the θ̄-direction

produces the on-shell nilpotent co-BRST transformation sd� for the generic local field
� = (Aµ,C, C̄). Thus, there exists a mapping, namely, sd ↔ ∂/∂θ̄ .

There is a clear-cut distinction, however, between Qb and Qd as far as the translation of
the fermionic superfields (or transformations on (anti-)ghost fields (C̄)C) along θ̄-direction
is concerned. For instance, the translation generated by Qb along θ̄-direction results in
the transformation for the anti-ghost field C̄ but analogous translation by Qd leads to the
transformation for the ghost field C. In more sophisticated language, the horizontality condition
entails upon the chiral superfield �̄ to remain chiral but the chiral superfield � becomes a local
spacetime field (i.e. �(x, θ̄) = C(x)). In contrast, the dual-horizontality condition entails
upon the chiral superfield � to retain its chirality but the chiral superfield �̄ becomes an
ordinary local field (i.e. �̄(x, θ̄ ) = C̄(x)).

5. Anti-BRST and anti-co-BRST symmetries: anti-chiral superfields

To derive the on-shell nilpotent anti-BRST and anti-co-BRST symmetry transformations of
(2.2) and (2.3), we resort to the anti-chiral superfields Ã

(ac)
M (x, θ) = (

B(ac)
µ ,�(ac), �̄(ac)

)
(x, θ)

which have the following super expansions along the θ -direction of the supermanifold:

B(ac)
µ (x, θ) = Aµ(x) + θR̄µ(x)

�(ac)(x, θ̄ ) = C(x) − iθb3(x)

�̄(ac)(x, θ) = C̄(x) + iθ B̄(x).

(5.1)

These are, in fact, the anti-chiral limit (θ̄ → 0) of the general super expansion (3.1) on the
(4 + 2)-dimensional supermanifold with an exception. The change in sign of the expansion
for the superfield �(ac)(x, θ) has been taken for the algebraic convenience which amounts to
the replacement b̄3(x) → −b3(x). This choice has been guided by our knowledge of the most
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general discussion of nilpotent symmetries in section 2. The super exterior derivative d̃|(ac)

and super connection 1-form Ã|(ac), for our present discussion, are

d̃|(ac) = dZM
(ac)∂M ≡ dxµ ∂µ + dθ∂θ

Ã|(ac) = dZM
(ac)ÃM ≡ dxµ B(ac)

µ (x, θ) + dθ�̄(ac)(x, θ)
(5.2)

which are the anti-chiral limit (θ → 0, dθ → 0) of the corresponding general expressions
defined in (3.2). Now the imposition of the horizontality condition (d̃Ã)|(ac) = dA implies
the restriction that the curvature 2-form F = dA, defined on the ordinary spacetime manifold,
remains unchanged. In other words, the superspace contributions to the curvature 2-form are
set equal to zero. The following inputs (i.e. the anti-chiral limit of (3.3)):

(d̃Ã)|ac = (dxµ ∧ dxν)
(
∂µB(ac)

ν

)
+ (dxµ ∧ dθ)

(
∂µ�̄(ac) − ∂θB

(ac)
µ

) − (dθ ∧ dθ)(∂θ �̄
(ac))
(5.3)

dA = (dxµ ∧ dxν)(∂µAν) ≡ 1
2 (dxµ ∧ dxν)(∂µAν − ∂νAµ)

lead to the following relationships due to dA = (d̃Ã)|ac:

∂θ �̄
(ac)(x, θ) = 0 → B̄(x) = 0 ∂µ�̄(ac)(x, θ) = ∂θB

(ac)
µ (x, θ) → R̄µ(x) = ∂µC̄(x)

(5.4)

and ∂µB(ac)
ν −∂νB

(ac)
µ = ∂µAν−∂νAµ which implies ∂µR̄ν−∂νR̄µ = 0. The latter requirement

is automatically satisfied by R̄µ = ∂µC̄. It is clear that the above horizontality restriction
does not fix b3(x) in terms of the basic fields of the Lagrangian density (2.1). However, the
equation of motion b3 = −(∂ · A) for the Lagrangian density (2.4) comes to our help. With
these insertions, the super expansion (5.1) becomes

B(ac)
µ (x, θ) = Aµ(x) + θ∂µC̄(x) ≡ Aµ(x) + θ(sabAµ(x))

�(ac)(x, θ̄ ) = C(x) + iθ(∂ · A)(x) ≡ C(x) + θ(sabC(x))

�̄(ac)(x, θ) = C̄(x) + iθ(B̄(x) = 0) ≡ C̄(x) + θ(sabC̄(x) = 0).

(5.5)

It is now straightforward to check that

∂

∂θ
Ã

(ac)
M (x, θ) = −i[�(x),Qab]± ≡ sab�(x)

Ã
(ac)
M = (�, �̄, Bµ)(ac) � = (C, C̄, Aµ)

(5.6)

where the above brackets have the same interpretation as discussed earlier. This equation
shows that geometrically the on-shell nilpotent anti-BRST charge Qab is the generator of
translation ∂/∂θ for the anti-chiral superfield Ã

(ac)
M (x, θ) = (Bµ,�, �̄)(ac)(x, θ) along the

θ -direction of the supermanifold. In fact, this process of translation induces the anti-BRST
symmetry transformations (i.e. sab�) for the local fields � that are listed in equation (2.2).
Thus, there is a mapping sab ↔ ∂/∂θ between the above two key operators and the nilpotency
of the anti-BRST transformation s2

ab = 0 (as well as the corresponding charge (Q2
ab = 0)) is

encoded in the square of the translation generator (∂/∂θ)2 = 0.
For the derivation of the on-shell nilpotent anti-co-BRST symmetry, we shall resort to

the anti-chiral superfield formulation. It is straightforward to check that the anti-chiral limit
(θ → 0) of the most general expression (3.9) leads to the following:

Limθ̄→0(δ̃Ã) = (δ̃Ã)|(ac) ≡ (∂ · B)(ac) − sθθ (∂θ�
(ac)). (5.7)

The restriction (δ̃Ã)|(ac) = δA (which physically implies an imposition that the 0-form gauge-
fixing term δA = (∂ · A), defined on the ordinary spacetime manifold, remains unchanged)
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leads to the following relationships:

(∂θ�
(ac))(x, θ) = 0 → b3(x) = 0 (∂ · B)(ac) = (∂ · A) → (∂ · R̄) = 0. (5.8)

The condition (∂ · R̄) = 0 is readily satisfied by the choice R̄0 = iC, Ri = i
(
∂0∂i

/∇2
)
C.

The dual-horizontality condition (δ̃Ã)|(ac) = δA does not fix the field B̄ = +i
(
∂ib

(1)
i

/∇2
)

or

B̄(I ) = +i
(
∂ib

(1)
i + eJ0

)/∇2 in terms of the basic fields of free as well as interacting theories.
The equation of motion b(1) = E for the Lagrangian density (2.4), however, comes to our
rescue. The super expansion for the free 4D Abelian theory becomes

B
(ac)
0 (x, θ) = A0(x) + θ(iC(x)) ≡ A0(x) + θ(sadA0(x))

B
(ac)
i (x, θ) = Ai(x) + θ

(
i ∂0∂i

∇2

)
C(x) ≡ Ai(x) + θ(sadAi(x))

�(ac)(x, θ) = C(x) + θ(i b3(x) = 0) ≡ C(x) + θ(sadC(x) = 0)

�̄(ac)(x, θ) = C̄(x) + θ

(
−∂iEi

∇2

)
(x) ≡ C̄(x) + θ(sadC̄(x)).

(5.9)

The geometrical interpretation for the co-BRST charge Qad is encoded in

∂

∂θ
Ã

(ac)
M (x, θ) = −i[�(x),Qad ]± ≡ sad�(x)

Ã
(ac)
M = (�, �̄, B0, Bi)

(ac) � = (C, C̄, A0, Ai)

(5.10)

where the brackets [ , ]± have the same interpretation as explained earlier. It is obvious to
note that Qad turns out to be the translation generator (∂/∂θ) for the anti-chiral superfields
Ã

(ac)
M (x, θ) = (Bµ,�, �̄)(ac)(x, θ) along the θ -direction of the supermanifold. The action of

the on-shell nilpotent transformation operator sad on the local fields � and the operation of
(∂/∂θ) on the anti-chiral superfields Ã

(ac)
M (x, θ) are inter-related and there exists a mapping

sad ↔ (∂/∂θ). The nilpotency s2
ad = 0 is connected to (∂/∂θ)2 = 0. Even though both

the charges Qad,Qab have the similar kind of mapping with the translation generator, there
is a clear distinction between them. Whereas the former generates a transformation for the
ghost field C through the translation of the superfield �, the latter generates the corresponding
transformation on the anti-ghost field C̄ through the translation of �̄ superfield. The direction
of translation for the superfields is common for both of them (i.e. the θ -direction of the
supermanifold).

6. On-shell nilpotent symmetries: general superfield formulation

It should be emphasized that the on-shell nilpotent (anti-)BRST and (anti-)co-BRST
symmetries can be derived together if we merge systematically the (anti-)chiral superfields
and have the super expansion for the free theory as (see, e.g., [19] for details)

Bµ(x, θ, θ̄ ) = Aµ(x) + θR̄µ(x) + θ̄Rµ(x) + iθ θ̄Sµ(x)

�(x, θ, θ̄ ) = C(x) + iθ(∂ · A)(x) + iθ̄

(−i ∂iEi

∇2

)
(x) + iθ θ̄s(x)

�̄(x, θ, θ̄ ) = C̄(x) + iθ

(
i ∂iEi

∇2

)
(x) + iθ̄ (−(∂ · A))(x) + iθ θ̄ s̄(x).

(6.1)

For the interacting theory, one has to replace ∂iEi in the above by (∂iEi + eJ0). In our earlier
works [19, 24], similar super expansions with the definitions in (3.2) and � operation defined
in (3.7) and (3.10) (together with those given in the appendix), have been exploited in the
horizontality condition (F̃ = d̃Ã = dA = F) as well as in the dual-horizontality conditions
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(δ̃Ã = δA) for the 2D free Abelian and self-interacting non-Abelian gauge theories. For our
present free as well as interacting 4D theory, the horizontality condition (d̃Ã = dA) leads to
the derivation of the auxiliary fields in terms of the basic fields of the Lagrangian density (2.1)
as follows:

Rµ = ∂µC R̄µ = ∂µC̄ Sµ = −∂µ(∂ · A) s = s̄ = 0. (6.2)

Taking the help of the above expressions, the expansions in (6.1) can be expressed in terms of
the on-shell nilpotent (anti-)BRST symmetries (2.2) as

Bµ(x, θ, θ̄ ) = Aµ(x) + θ(sabAµ(x)) + θ̄ (sbAµ(x)) + θ θ̄(sbsabAµ(x))

�(x, θ, θ̄ ) = C(x) + θ(sabC(x)) + θ̄ (sbC(x)) + θ θ̄(sbsabC(x))

�̄(x, θ, θ̄ ) = C̄(x) + θ(sabC̄(x)) + θ̄ (sbC̄(x)) + θ θ̄(sbsabC̄(x)).

(6.3)

In a similar fashion, the dual horizontality condition (δ̃Ã = δA) w.r.t. (super) co-exterior
derivatives (δ̃)δ leads to the following relationships:

(∂ · R) = (∂ · R̄) = (∂ · S) = 0 s = s̄ = 0. (6.4)

It is evident now that the above relations have solutions in (3.12) and (3.13) which satisfy all the
conditions. Thus, in terms of the on-shell nilpotent (anti-)co-BRST symmetry transformations
(2.3), the expansion in (6.1) can be written as

Bµ(x, θ, θ̄ ) = Aµ(x) + θ(sadAµ(x)) + θ̄ (sdAµ(x)) + θ θ̄(sdsadAµ(x))

�(x, θ, θ̄ ) = C(x) + θ(sadC(x)) + θ̄ (sdC(x)) + θ θ̄(sdsadC(x))

�̄(x, θ, θ̄ ) = C̄(x) + θ(sadC̄(x)) + θ̄ (sdC̄(x)) + θ θ̄(sdsadC̄(x)).

(6.5)

We would like to lay stress on the fact that it is only for the free (1-form) Abelian gauge
theory that (anti-)chiral superfields are merged together systematically to produce the on-
shell nilpotent (anti-)BRST and (anti-)co-BRST symmetries together in the framework of the
geometrical superfield formulation. The same is not true for the non-Abelian gauge theory
in any arbitrary dimension of spacetime. In fact, the on-shell nilpotent anti-BRST and anti-
co-BRST symmetries do not exist for the non-Abelian gauge theories. For the derivation of
the off-shell nilpotent versions of the (anti-)BRST and (anti-)co-BRST symmetries for the
non-Abelian gauge theories, one has to introduce another set of auxiliary fields (see, e.g.,
[18, 25–28] for the details).

7. Conclusions

In the present investigation, we have derived the off-shell as well as on-shell nilpotent versions
of the (anti-)BRST and (anti-)co-BRST symmetry transformations for the free 4D 1-form
Abelian gauge theory in the framework of geometrical superfield formalism. For this purpose,
we have invoked general superfields as well as (anti-)chiral superfields and their corresponding
super expansions. We have also derived a mapping between the translation generators
(∂/∂θ, ∂/∂θ̄) (along the (θ, θ̄ ) directions of the six (4 + 2)-dimensional supermanifold) and
the internal nilpotent transformations of the on-shell variety s(a)b, s(a)d as well as the off-shell
variety s̃(a)b, s̃(a)d for the Lagrangian density of the theory, as

∂

∂θ̄
↔ s(d)b

∂

∂θ
↔ sab

∂

∂θ
↔ sad

s̃(d)b ↔ Limθ,θ̄→0
∂

∂θ̄
s̃ab ↔ Limθ,θ̄→0

∂

∂θ
s̃ad ↔ Limθ,θ̄→0

∂

∂θ
.

(7.1)
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This mapping enables us to provide the geometrical interpretation for the conserved and
nilpotent (anti-)BRST (Q(a)b) and (anti-)co-BRST (Q(a)d) charges as the translation generators
(∂/∂θ, ∂/∂θ̄) along the Grassmannian directions of the supermanifold. Furthermore, it also
provides the geometrical origin and interpretation for the nilpotency

(
Q2

(a)b = 0,Q2
(a)d = 0

)
property of these charges as a couple of successive translations (i.e. (∂/∂θ)2 = (∂/∂θ̄)2 = 0)

along the Grassmannian directions of the supermanifold. The above statements are valid
for the off-shell as well as on-shell versions of the (anti-)BRST (Q(a)b) and (anti-)co-BRST
(Q(a)d) charges and their specific nilpotent properties.

One of the interesting features of our investigation is the observation (and its proof) that
the (dual-)horizontality conditions on the (anti-)chiral superfields lead to the derivation of
the on-shell nilpotent (anti-)BRST and (anti-)co-BRST symmetries (cf sections 4 and 5) that
co-exist together (cf section 6) for the Lagrangian density of a 4D free Abelian gauge theory.
We have shown that (anti-)chiral superfields can merge consistently in the case of the free 4D
Abelian gauge theories and they lead to the derivation of the on-shell nilpotent (anti-)BRST and
(anti-)co-BRST symmetries together. The same does not happen in the case of self-interacting
2D non-Abelian gauge theory (see, e.g., [24] for details). As emphasized in the introduction,
one of the key differences between the (anti-)BRST and (anti-)co-BRST transformations is the
fact that whereas the former transformations are local, covariant, continuous and nilpotent, the
latter are non-local, non-covariant, continuous and nilpotent. To capture the non-locality and
non-covariance of the latter transformations in the framework of superfield approach, we have
chosen the non-local auxiliary fields B = −i

(
∂ib

(1)
i

/∇2
)

and B̄ = +i
(
∂ib

(1)
i

/∇2
)

in the super
expansion of the superfields �(x, θ, θ̄ ) and �̄(x, θ, θ̄ ) for the free 4D Abelian gauge theory.
For the case of the interacting theory, one can choose instead: B(I ) = −i

(
∂ib

(1)
i + eJ0

)/∇2

and B̄(I ) = +i
(
∂ib

(1)
i + eJ0

)/∇2. In this context, it is worthwhile to mention an interesting
observation in [31] that these non-locality and non-covariance disappear in the momentum
phase space if we take into account the key ingredients and inputs from the Wigner’s little
group. In fact, the choice of the reference frame kµ = (ω, 0, 0, ω) for the propagating massless
(k2 = 0) photon along the z-direction of the 4D manifold with energy ω simplifies all the
(anti-)commutators of the theory and the whole discussion on the BRST cohomology becomes
local and covariant in this particular reference frame (see, e.g., [31] for details).

In the framework of superfield formalism, the non-locality and non-covariance of the
transformations on the gauge field Aµ turns up from the conditions (∂ · R) = (∂ · R̄) = 0
which emerge due to the dual-horizontality condition (cf (3.9) and (3.11)). This is not the case
for the two (1 + 1)-dimensional (2D) (i) free Abelian gauge theory [32–34], (ii) interacting
Abelian gauge theory where U(1) gauge field couples with the Dirac fields [35, 36], (iii) self-
interacting non-Abelian gauge theory [37, 34], etc, where the local and covariant solutions for
the the conditions (∂ · R) = (∂ · R̄) = 0 do exist as: Rµ = −εµν∂

νC̄ and R̄µ = −εµν∂
νC

where εµν is the anti-symmetric Levi-Civita tensor in 2D with ε01 = +1 = ε10. Unlike
the precise and unique derivation of the (anti-)BRST symmetry transformations due to the
horizontality condition d̃Ã = dA, the dual-horizontality condition δ̃Ã = δA does not exactly
and uniquely lead to the derivation of all the auxiliary fields Rµ(x) and R̄µ(x) in terms of
the (anti-)ghost fields (C̄)C. In fact, for the 4D theory, one has to make judicious choice for
R0, R̄0, Ri and R̄i in terms of the anti-commuting (anti-)ghost fields for the validity of the
conditions (∂ · R) = (∂ · R̄) = 0. In a similar fashion, one has to make judicious and clever
guess for the expression for Sµ (cf (3.13)) so that it can (i) satisfy (∂ · S) = 0 and (ii) be
consistent with expansions in (3.5) and (3.14). It can be checked that our choice in (3.13)
fulfils both these criteria. In fact, the non-uniqueness of the solutions for (∂ ·R) = (∂ · R̄) = 0
in the case of 4D 1-form Abelian gauge theory is very interesting because it is primarily this
feature of the superfield formulation which is responsible for the existence of several guises of
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the dual-BRST symmetries that has been discussed extensively in [4]. These different looking
symmetries correspond to different choices of R (and R̄) such as R0 = i∇2C̄, i(∇2/∂0)C̄ and
Ri = i ∂0∂iC̄, i ∂iC̄ (and R̄0 = i∇2C, i(∇2/∂0)C, R̄i = i ∂0∂iC, i ∂iC) etc under which the
gauge-fixing term remains invariant. Thus, in some sense, the superfield formulation with the
super co-exterior derivative δ̃ and the corresponding dual-horizontality condition do provide
the reason for the existence of several forms of the (non-local, non-covariant, continuous and
nilpotent) dual-BRST symmetries for the 1-form Abelian gauge theory.

It has been a long-standing problem to obtain, in a systematic way, the BRST-type
transformations (cf (2.2), (2.3), (2.5), (2.6)) on the matter fields ψ and ψ̄ in the framework of
superfield approach applied to the BRST formalism. So far, the BRST-type transformations on
the gauge fields (see, e.g., [12–17] for the 1-form and 2-form free gauge theories) and the ghost
fields have been obtained in the superfield formulation. In fact, this is the present status of this
approach because, hitherto, only the (dual-)horizontality conditions δ̃Ã = δ̃A, d̃Ã = dA etc
(that involve the (super-)gauge fields and super (co-)exterior derivatives) have been exploited
in the derivation of the BRST-type symmetries on the gauge- and the ghost fields. In these
restrictions, it is obvious that the matter fields ψ and ψ̄ play no significant role at all. This
is the central reason that, so far, it has not been possible to obtain the BRST-type symmetries
on the matter fields in the superfield approach. However, we strongly feel that, the continuity
equation δJ = 0 → ∂µJµ = 0, which involves the 1-form J (i.e. J = dxµ Jµ, with
Jµ = ψ̄γµψ) and the co-exterior derivative δ (i.e. δ = − ∗ d∗), might play an important role
in the derivation of the BRST-type transformations on the matter fields. In this restriction,
all one has to do is to have the super expansions for the superfields corresponding to the
matter fields ψ and ψ̄ analogous to (3.1). The insertions of these superfields in the restriction
(δ̃J̃ = δJ = 0), corresponding to the continuity equation (∂µJµ = 0), might lead to the
derivation of BRST-type transformations on the matter fields. There is another clue which
might help in such a derivation. This is connected with the restriction that the interaction
term JµAµ should remain unchanged in the process of supersymmetrization. In other words,
this amounts to the condition : J̃ µBµ = JµAµ where J̃ µ is the current constructed with the
superfields corresponding to the matter fields ψ and ψ̄ and Bµ is the superfield defined in
(3.1). These issues and ideas are under investigation at the moment and the preliminary results
are found to be encouraging for QED in 2D.

It is interesting to point out that local, covariant, continuous and (off-shell as well as
on-shell) nilpotent versions of the (anti-)BRST and (anti-)co-BRST symmetries have been
obtained for the 4D free Abelian 2-form gauge theory defined on the flat Minkowski manifold
[38, 39]. Its quasi-topological nature has been discussed in [39] and it has been shown that this
theory provides a tractable field theoretical model for the Hodge theory in 4D [38, 39]. The
‘extended’ BRST cohomology for this theory has been discussed in [40] where the insights
from the Wigner’s little group play a very crucial role. It would be interesting endeavour
to capture the (anti-)BRST and (anti-)co-BRST symmetries for the above 2-form Abelian
gauge theory in the framework of superfield formalism and provide geometrical origin for the
nilpotent charges in the theory. Such studies might shed some light on the quasi-topological
nature (see, e.g., [39]) of this theory in the framework of superfield formalism and it might
provide some clue to attempt the nilpotent symmetries of this kind present in the case of non-
Abelian 2-form gauge theories. All such understandings of the 2-form gauge theories will
furnish some insights into our main goal of understanding the interacting 2-form gauge theories
where there is a gauge invariant coupling between the matter fields and the anti-symmetric
(2-form) gauge field. Another very interesting endeavour that can be attempted is based on the
local OSp(4 | 2) supersymmetry and its connection with the extended BRST transformations in
the context of gravitational theories where the geometrical superfield approach could be applied
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(see, e.g., [15] for details). In fact, the extension of our work to the realm of gravitational
theories will complete the generality of the application of super co-exterior derivative and the
corresponding dual-horizontality condition. These are some of the issues which are under
investigation and our results will be reported elsewhere [41].
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Appendix

In addition to the � operations in (3.7) and (3.10), we collect here some of the � operations
on the wedge products of the super differentials defined on the six (4 + 2)-dimensional
supermanifold. We have followed our convention of putting the spacetime differentials to the
left and the Grassmannian differentials to the right in every wedge products. Some of these �

operations are

�(dxµ ∧ dxν ∧ dxλ ∧ dθ) = εµνλξ (dxξ ∧ dθ̄ )

�(dxµ ∧ dxν ∧ dxλ ∧ dθ̄ ) = εµνλξ (dxξ ∧ dθ)

�(dxµ ∧ dθ̄ ) = 1

3!
εµνλξ ( dxν ∧ dxλ ∧ dxξ ∧ dθ)

�(dxµ ∧ dθ) = 1

3!
εµνλξ ( dxν ∧ dxλ ∧ dxξ ∧ dθ̄ )

�(dxµ ∧ dxν ∧ dθ ∧ dθ) = 1

2!
εµνλξ (dxλ ∧ dxξ )s

θθ

�[(dxµ ∧ dxν)s
θθ ] = 1

2!
εµνλξ (dxλ ∧ dxξ ∧ dθ ∧ dθ)

�(dxµ ∧ dxν ∧ dθ̄ ∧ dθ̄ ) = 1

2!
εµνλξ (dxλ ∧ dxξ )s

θ̄ θ̄

�[(dxµ ∧ dxν)s
θ̄ θ̄ ] = 1

2!
εµνλξ (dxλ ∧ dxξ ∧ dθ̄ ∧ dθ̄ )

�(dxµ ∧ dθ ∧ dθ) = 1

3!
εµνλξ (dxν ∧ dxλ ∧ dxξ )s

θθ

�[(dxµ ∧ dxν ∧ dxλ)s
θθ ] = εµνλξ (dxξ ∧ dθ ∧ dθ)

�(dxµ ∧ dθ̄ ∧ dθ̄ ) = 1

3!
εµνλξ (dxν ∧ dxλ ∧ dxξ )s

θ̄ θ̄

�[(dxµ ∧ dxν ∧ dxλ)s
θ̄ θ̄ ] = εµνλξ (dxξ ∧ dθ̄ ∧ dθ̄ )

�(dθ ∧ dθ) = 1

4!
εµνλξ (dxµ ∧ dxν ∧ dxλ ∧ dxξ )s

θθ

�[(dxµ ∧ dxν ∧ dxλ ∧ dxξ )s
θθ ] = εµνλξ (dθ ∧ dθ)

�(dθ̄ ∧ dθ̄ ) = 1

4!
εµνλξ (dxµ ∧ dxν ∧ dxλ ∧ dxξ )s

θ̄ θ̄

�[(dxµ ∧ dxν ∧ dxλ ∧ dxξ )s
θ̄ θ̄ ] = εµνλξ (dθ̄ ∧ dθ̄ ).
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It should be noted that we have not included some of the � operations on the super differentials
containing (dθ ∧ dθ̄ ) because, as pointed out in section 3, these can arise in two entirely
different ways. While taking the � of such differentials, one has to be careful about the presence
and/or absence of sθθ̄ as illustrated in (3.10). We would like to emphasize that we have chosen
here some of the super differentials where some non-trivialities are present. However, one
can easily exploit the above understanding to take the � operations on differentials of the form
(dxµ ∧ dxν) etc where only spacetime differentials are present. These operations would be
analogous to what we have already done in equation (3.7).
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